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We consider the delayed feedback control method for stabilization of unstable rotating waves near a fold
bifurcation. Theoretical analysis of a generic model and numerical bifurcation analysis of the rate-equations
model demonstrate that such orbits can always be stabilized by a proper choice of control parameters. Our
paper confirms the recently discovered invalidity of the so-called “odd-number limitation” of delayed feedback
control. Previous results have been restricted to the vicinity of a subcritical Hopf bifurcation. We now refute
such a limitation for rotating waves near a fold bifurcation. We include an application to all-optical realization
of the control in three-section semiconductor lasers.
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I. INTRODUCTION

Control of complex irregular dynamics is one of the cen-
tral issues in applied nonlinear science �1�. Starting with the
work of Ott, Grebogi, and Yorke �2�, a variety of methods
have been developed in order to stabilize unstable periodic
orbits �UPOs� embedded in a chaotic attractor by employing
tiny control forces. A particularly simple and efficient
scheme is time-delayed feedback control as suggested by
Pyragas �3�. In recent years the notion of chaos control has
been extended to a much wider class of problems involving
the stabilization of unstable periodic states in nonlinear dy-
namic systems, and has been applied to a vast range of prob-
lems in physics, chemistry, biology, medicine, and engineer-
ing. However, a deepened understanding of the control
schemes and analytic insight into their potential limitations is
still a challenging task.

Recently, Fiedler et al. �4� have refuted an often invoked
assertion, the so-called “odd-number limitation” of delayed
feedback control. This purported limitation claims that a pe-
riodic orbit with an odd number of real Floquet multipliers
greater than unity cannot be stabilized by the time-delayed
feedback control in the form proposed by Pyragas �3�. The
papers �4–6� show the possibility of stabilization of unstable
periodic orbits, which are generated by a subcritical Hopf
bifurcation. In our paper, we consider the case when the
unstable periodic orbit is generated by a fold bifurcation of
saddle-node type �see Eq. �1� below�. We show that such
orbits can be stabilized by delayed feedback control. We will
restrict our analysis to the case when the periodic orbits have
the special form of rotating waves. This case is particularly
important for applications to optical systems and, in addition,
allows detailed analytical treatment. One such system, a
three-section semiconductor laser, will be considered in our
paper. Numerical bifurcation analysis confirms that an all-
optical delayed feedback control can successfully stabilize
rotating waves close to a fold bifurcation in this system.
All-optical control exploits the advantage of delayed feed-

back control, as well as simplicity and inherent high-speed
operation. All-optical control of unstable steady states close
to a supercritical Hopf bifurcation of the same system has
been reported in Ref. �7�.

The plan of our paper is as follows: Sec. II is devoted to
the analytical treatment of a generic model for fold bifurca-
tions of rotating waves. We derive necessary and sufficient
conditions for successful control. In particular, we show that
the stabilization can be achieved by delayed feedback with
arbitrarily small control amplitude provided the phase of the
control is chosen appropriately. In Sec. III, we study a rate-
equation model for three-section semiconductor lasers with
all-optical delayed feedback. For suitably chosen parameter
values, this model has a fold bifurcation. Numerical bifurca-
tion analysis establishes successful control in the vicinity of
this bifurcation.

II. ANALYSIS OF FOLDS OF ROTATING WAVES

A. Properties of the fold system without control

As a paradigm for fold bifurcation of rotating waves we
consider planar systems of the form

ż = g��, �z�2�z + ih��, �z�2�z . �1�

Here z�t� is a scalar complex variable, g and h are real valued
functions, and � is a real parameter. Systems of the form �1�
are S1-equivariant, i.e., ei�z�t� is a solution whenever z�t� is,
for any fixed ei� in the unit circle S1. In polar coordinates
z=rei� this manifests itself by the absence of � from the
right-hand sides of the resulting differential equations

ṙ = g��,r2�r ,

�̇ = h��,r2� . �2�

In particular, all periodic solutions of Eq. �1� are indeed ro-
tating waves, alias harmonic, of the form
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z�t� = rei�t

for suitable nonzero real constants r ,�. Specifically, this re-
quires ṙ=0, �̇=�

0 = g��,r2� ,

� = h��,r2� . �3�

Fold bifurcations of rotating waves are generated by the non-
linearities

g��,r2� = �r2 − 1�2 − � ,

h��,r2� = ��r2 − 1� + �0. �4�

Our choice of nonlinearities is generic in the sense that
g�� ,r2� is the normal form for a nondegenerate fold bifurca-
tion �8� at r2=1 and �=0 �see Fig. 1 for the resulting bifur-
cation diagram�. We fix coefficients � ,�0�0.

Using Eqs. �3� and �4�, the amplitude r and frequency �
of the rotating waves then satisfy

r2 = 1 � ��, � = �0 + ��r2 − 1� = �0 � ��� . �5�

The signs � correspond to different branches in Fig. 1: +,
unstable and −, stable.

B. Fold system with delayed feedback control

Our goal is to investigate delay stabilization of the fold
system �1� by the delayed feedback term

ż = f��, �z�2�z + b0ei��z�t − 	� − z�t�� , �6�

with real positive control amplitude b0, delay 	, and real
control phase �. Here we have used the abbreviation f =g
+ ih. The Pyragas choice requires the delay 	 to be an integer
multiple k of the minimum period T of the periodic solution
to be stabilized,

	 = kT . �7�

This choice guarantees that periodic orbits of the original
system �1� with period T are reproduced exactly and nonin-
vasively by the control system �6�. The minimum period T of
a rotating wave z=rei�t is given explicitly by T=2
 /�. Us-
ing Eqs. �5�, Eq. �7� becomes

	 =
2
k

�0 � ���
, �8�

or, equivalently,

� = ��	� = �2
k − �0	

�	
�2

. �9�

In the following we select only the branch of ��	� corre-
sponding to the 	 value with the + sign, which is associated
with the unstable orbit. Condition �9� then determines the kth
Pyragas curve in parameter space �	 ,��, where the delayed
feedback is noninvasive, indeed. The fold parameter �=0
corresponds to 	=2
k /�0, along the kth Pyragas curve �see
Fig. 2 for the Pyragas curves in the parameter plane �	 ,���.

For the delay stabilization system �6� we now consider 	
as the relevant bifurcation parameter. We restrict our study of
Eq. �6� to �=��	� given by the Pyragas curve �9�, because
	=kT is the primary condition for noninvasive delayed feed-
back control.

We begin with the trivial case b0=0 of vanishing control,
somewhat pedantically; see Sec. II A. For each �=��	�, we
encounter two rotating waves given by

r2 = 1 �
2
k − �0	

�	
, � = �0 � �2
k − �0	

	
� . �10�

The two resulting branches form a transcritical bifurcation at
	=2
k /�0. At this stage, the transcriticality looks like an
artifact, spuriously caused by our choice of the Pyragas curve
�=��	�. Note, however, that only one of the two crossing
branches features minimum period T such that the Pyragas
condition 	=kT holds. This happens along the branch

r2 = 1 +
2
k − �0	

�	
, � = 2
k/	

�see Fig. 3�. We call this branch, which corresponds to “+” in
Eq. �10�, the Pyragas branch. The other branch has mini-
mum period T with

kT =

k

�0	 − 
k
	 � 	 ,

except at the crossing point �0	=2
k. The minus branch
therefore violates the Pyragas condition for noninvasive con-
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FIG. 1. �Color online� Bifurcation diagram of rotating waves
�solid line: stable; dashed line: unstable� of Eqs. �1� and �4�. Arrows
indicate �in�stability according to Eq. �2�.

FIG. 2. The Pyragas curves �=��	�, corresponding to the un-
stable branch in Fig. 1, in the parameter plane �	 ,��; see Eq. �9�.
Parameters: �=�0=1.
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trol, even though it has admittedly been generated from the
same fold bifurcation.

Our strategy for Pyragas control of the unstable part of the
Pyragas branch is now simple. For a nonzero control ampli-
tude b0, the Pyragas branch persists without change, due to
the noninvasive property 	=kT along the Pyragas curve �
=��	�. The minus branch, however, will be perturbed
slightly for small b0�0. If the resulting perturbed transcriti-
cal bifurcation

	 = 	c �11�

moves to the left, i.e., below 2
k /�0, then the stability re-
gion of the Pyragas branch has invaded the unstable region
of the fold bifurcation. Again this refutes the notorious odd-
number limitation of Pyragas control �see Fiedler et al. �4�,
and references therein�.

Let 	=	c denote the transcritical bifurcation point on the
Pyragas curve �=��	� �see Eq. �9��. Let z�t�=rce

i�ct denote
the corresponding rotating wave, and abbreviate �	rc

2−1. In
Appendix A, we obtain conditions for the transcritical bifur-
cation in Eq. �6�. As a result, the following relations between
the control amplitude bc at the bifurcation and �,	c are
shown:

bc = − �
�0 + ��

k
�� sin � + 2� cos ��
, �12�

and

bc = −
2
k − �0	c

	c� 1
2�2	c sin � + �2
k − �0	c�cos �� . �13�

As follows from Eqs. �12� and �13�, for small �, alias for 	c
near 2k
 /�0, the optimal control angle is �=−
 /2 in the
limit �→0, and for fixed k ,�0 ,� ,� this control phase �
allows for stabilization with the smallest amplitude �bc�. For
�=−
 /2 the relations Eqs. �12� and �13� simplify to

bc =
�

k

��0

�
+ �� , �14�

and

bc =
2

��	c�2 �2k
 − �0	c� , �15�

respectively. For small b0�0 we also have the expansions

� = − �k

�

�0
sin ��b0 + ¯ , �16�

and

	c =
2
k

�0
+ 
 1

2�0
�2k
�

�0
�2

sin ��b0 + ¯ . �17�

for the location of the transcritical bifurcation. In particular,
we see that odd-number delay stabilization can be achieved
by arbitrary small control amplitudes b0 near the fold for �
�0 and sin ��0. Note that the stability region of the
Pyragas curve increases if �=rc

2−1�0 �see Fig. 1�. For van-
ishing phase angle of the control, �=0, in contrast, delay
stabilization cannot be achieved by arbitrarily small control
amplitudes b0, near the fold in our system �6�.

Even far from the fold at �=0, 	=2k
 /�0, the above
formulas �12�–�15� hold and indicate a transcritical bifurca-
tion from the �global� Pyragas branch of rotating waves of
Eq. �6�, along the Pyragas curve �=��	�. This follows by
analytic continuation. Delay stabilization, however, may fail
long before 	=	c is reached. In fact, nonzero purely imagi-
nary Floquet exponents may arise, which destabilize the
Pyragas branch long before 	=	c is reached. This interesting
point remains open.

A more global picture of the orbits involved in the tran-
scritical bifurcation may be obtained by numerical analysis.
Rewriting Eq. �6� in polar coordinates z=rei� yields

ṙ = ��r2 − 1�2 − ��r + b0�cos�� + ��t − 	� − ��


r�t − 	� − r cos �
 , �18�

�̇ = ��r2 − 1� + �0 + b0�sin�� + ��t − 	� − ��


r�t − 	�/r − sin �
 . �19�

To find all rotating wave solutions we make the ansatz r
=const and �̇=�=const and obtain

0 = �r2 − 1�2 − � + b0�cos�� − �	� − cos �� ,

� = ��r2 − 1� + �0 + b0�sin�� − �	� − sin �� .

Eliminating r we find a transcendental equation for �

0 = − �2� + �2b0�cos�� − �	� − cos ��

+ �� − �0 − b0�sin�� − �	� − sin ���2.

One can now solve this equation numerically for � and insert
the result into

r = �� − �0

�
−

b0

�
�sin�� − �	� − sin �� + 1�1/2

to obtain the allowed radii �discarding imaginary radii�.
The orbit which stabilizes the Pyragas branch in the tran-

scritical bifurcation may be the minus branch or another
delay-induced orbit which is born in a fold bifurcation, de-
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P y r a g a s

s t a b l e

FIG. 3. �Color online� Bifurcation diagram of rotating waves of
Eq. �6� at vanishing control amplitude b0=0. Parameters: T0

=2
 /�0, �0=1, �=10.
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pending on the parameters. Figure 4 displays the different
scenarios and the crossover in dependence on the control
amplitude b0. The value of � is chosen as �=9, 10.5, 10.6,
and 13 in panels �a�, �b�, �c�, and �d�, respectively. It can be
seen that the Pyragas orbit is stabilized by a transcritical
bifurcation T1. As the value of � increases, a pair of a stable
and an unstable orbit, generated by a fold bifurcation F1,
approaches the minus branch �see Fig. 4�a��. On this branch,
fold bifurcations �F2 and F3� occur as shown in Fig. 4�b�. At
�=10.6, the fold points of F1 and F2 touch in a transcritical
bifurcation T2 and annihilate �see Figs. 4�c� and 4�d��. Thus,
for a further increase of �, one is left with the stable minus
branch and the unstable orbit, which was generated at the
fold bifurcation F3. In all panels the radius of the Pyragas
orbit is not changed by the control. The radius of the minus

branch, however, is altered because the delay time does not
match the orbit period.

Figure 5 shows the region in the �� ,b0� plane where the
Pyragas orbit is stable for a set of parameters. The gray scale
�color code� shows only negative values of the largest real
part of the Floquet exponents. One can see that the orbit is
most stable for feedback phases ��−
 /2, which agrees
with the previous analytic results for small �. The picture
was obtained by linear stability analysis of Eqs. �18� and �19�
and the numerical solution of the transcendental eigenvalue
problem for the Floquet exponents �see Appendix B�.

III. APPLICATION TO ALL-OPTICAL CONTROL
OF SEMICONDUCTOR LASERS

Lasers in stationary states emit rotating waves. A first step
toward various instabilities is often the destruction of these
states or the creation of additional ones in fold bifurcations.
This happens generically when a laser is coupled to other
lasers or to external cavities �9�. In what follows, we inves-
tigate to what extent the results of Sec. II can be transferred
to lasers in such situations. In particular, we consider an
integrated tandem laser �ITL�, which is integrating two
single-mode lasers coupled by a passive waveguide section
on a monolithic semiconductor chip �cf. Fig. 6�. Devices of
this type are applied in ultrafast optical communication
�10,11�. Depending on pump currents, they exhibit different
types of bifurcations and dynamics at tens of GHz, and THz
are within reach �12,13�. Control on those ultrashort picosec-

(b)

(a)

(c)

(d)

FIG. 4. �Color online� Radii of stable �solid� and unstable
�dashed� rotating wave solutions in dependence on b0 for different
�. Parameters: �0=1, �=0.001, �=−
 /2.

FIG. 5. �Color online� Domain of stability of the Pyragas orbit.
The gray scale �color code� shows only negative values of the larg-
est real part of the Floquet exponents. Parameters: �0=1, �
=0.0001, �=0.1 �cf. also Fig. 11�.

FIG. 6. Schematic diagram for all-optical delayed feedback con-
trol. The emission from one facet of an integrated tandem laser is
injected into a Michelson interferometer. Two reflected waves re-
turn from there with different delays 	l and 	l+	. Their superposi-
tion is reinjected into the device and serves as a control force. The
amplitude b0 of the control is adjusted by a neutral density filter.
The control phase � rotates by 2
 when changing the pathway
between laser and interferometer by one wavelength.

FIEDLER et al. PHYSICAL REVIEW E 77, 066207 �2008�

066207-4



ond time scales can be performed only in the optical domain,
which profits from the ultimately high speed of light. Two
schemes have been proposed: optical feedback either from a
Michelson interferometer �14� or from a Fabry-Perot inter-
ferometer �15�. Experimental all-optical time-delayed feed-
back control has been developed only recently, exploiting
optical feedback from a Fabry-Perot interferometer to stabi-
lize unstable steady states of an ITL close to a Hopf bifurca-
tion �7�. In the present work we consider the Michelson con-
figuration �14�, which is the optical version of the Pyragas
method. The corresponding scheme is sketched in Fig. 6.

A. System without control

In order to describe the dynamics, we use the coupled
rate-equations model for ITL lasers in dimensionless form
�16�

Ė1 = i�E1 + �1 + i��N1E1 + �e−i�E2, �20�

Ṅ1 = ��J − N1 − �1 + 2N1��E1�2� , �21�

Ė2 = �1 + i��N2E2 + �e−i�E1 + Eb�t� , �22�

Ṅ2 = ��J − N2 − �1 + 2N2��E2�2� , �23�

extended by the control term Eb�t�, which is disregarded for
the moment and will be specified later �in Eq. �25��. The
complex amplitudes E1,2 and the real quantities N1,2 repre-
sent the optical fields and the carrier densities in the two
single-mode distributed feedback �DFB� lasers, respectively;
� accounts for the frequency detuning between them; J
stands for pumping currents; � and � characterize the cou-
pling rate and the optical phase shift, respectively, between
the two DFB sections; � denotes the linewidth-enhancement
factor characterizing the amplitude-phase coupling typical
for semiconductor lasers; �=	p /	n is the ratio between pho-
ton �	p� and carrier �	n� lifetimes; and 	p serves as a unit of
time. It is important to know that E1,2�t� represents slowly
varying amplitudes. The full temporal variation of the optical
fields is

E1,2�t� = E1,2�t�ei�0t, �24�

with the optical reference frequency �0 playing the role of
the corresponding quantity �0 in Sec. II. In the present for-
mulation, �0 is the optical frequency of laser 2 in its unper-
turbed ��=Eb=0� stationary state N2=0, E2=const. At com-
munication wavelengths around �=1.55 �m, we have �0
�1015 s−1. The corresponding dimensionless value is 50 000
when assuming 	p=5 ps. The dynamics of E�t� and N�t�
takes place on time scales which are more than three orders
of magnitude slower.

System �20�–�23� without control, i.e., Eb=0, was consid-
ered in detail in Ref. �16�. Rotational symmetry manifests
itself by the invariance with respect to the transformation
�E1 ,E2�� �ei�E1 ,ei�E2� for any ei� in the unit circle S1. This
causes periodic solutions in the form of rotating waves
�E1 ,N1 ,E2 ,N2�= �a1ei�t ,n1 ,a2ei�t ,n2� with real constants

� ,n1 ,n2 and complex constants a1 and a2. When varying the
phase � of the internal coupling between the two DFB lasers,
the rotating waves lose stability either in a Hopf bifurcation
or in a fold bifurcation as shown in a typical bifurcation
diagram presented in Fig. 7. The Hopf bifurcation gives rise
to periodically modulated waves, called self-pulsations,
which will not be considered furthermore. In the present con-
text, we consider the problem of stabilization of unstable
rotating waves close to the fold F. The frequencies � of
rotating waves near F are drawn in panel �b�. They increase
when moving up through F in concordance with the scenario
��0 considered in Sec. II. Thus, we can expect that the
stabilization of the unstable branch by Pyragas-type feedback
should be possible.

B. Optical control force

Under which conditions does optical feedback from a
Michelson interferometer give rise to a Pyragas-type control
term Eb�t�? Generally, Eb is proportional to the slowly vary-
ing amplitude of the light fed back from the interferometer,
which in turn is the sum of two partial waves, each one
reflected from a different mirror. Accordingly,

FIG. 7. �Color online� �a� Bifurcation diagram for the system
�20�–�23� without control; i.e., b0=0. Inset: a zoom close to the fold
bifurcation F. Thick lines: rotating waves; thin lines: modulated
waves �self-pulsations�. Stable and unstable parts of the diagram are
shown by solid lines and dashed lines, respectively. H: Hopf bifur-
cation; PD: periodic doubling of self-pulsations. �b� Frequencies of
rotating waves close to the fold bifurcation of panel �a�. Open
circle: exemplary target state for stabilization. Other parameters are
�=0.03, J=1, �=0.2, �=0.3, and �=2.
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Eb�t� = b0ei��ei�E2�t − 	l − 	� − E2�t − 	l�� . �25�

	l and 	l+	 are the travel times of light on the two pathways.
	 corresponds to the control delay time of Eq. �6� and 	l is an
additional latency, which unavoidably occurs in real systems.
The two optical phase shifts �=−��0	l+
� and �=−��0	
+
� are associated with the respective delays. They are the
impact of the fast optical phase rotation �24� on the slow
amplitudes of delayed light. The 
 is added in both cases to
obtain consistency with the choice of signs in Sec. II. Further
possible phase shifts, e.g., from reflections at mirrors, may
also be incorporated this way. Both phases are tunable by
subwavelength changes of the respective optical pathways
which have no effect on the slow amplitudes. Thus, they are
regarded as independent parameters. The feedback amplitude
b0 contains all attenuations on the respective round trips.
Note that equal attenuation on both pathways is assumed,
otherwise destructive interference remains incomplete and
noninvasiveness is not achievable. Noninvasiveness also re-
quires proper adjustment of phase �. Indeed, when the target
state is a rotating wave E2�t�=a2ei�t, the control term van-
ishes for ei��−�	�=1. This is the well-known condition for
destructive interference: nothing is reflected if the two re-
turning partial waves have opposite amplitudes. Control
phase � and amplitude b0 are free parameters playing the
same role as the corresponding quantities in Sec. II.

C. Stabilization of rotating waves

Now we study stabilization of rotating waves on the un-
stable branch close to the fold bifurcation in Fig. 7. We fix
the delays of the control term as 	l=8 and 	=12, correspond-
ing to about 40 and 60 ps, respectively, which are accessible
in experiment �7�. These parameters are not critical; other
values of the same order yield similar results.

Exemplarily, we address the unstable state �=0.1109 at
�=0.1267 �open circle in Fig. 7�b��, which without control
indeed has a single positive Floquet exponent �20� �Fig.
8�a��. With control �b0�0�, this target state itself does not
get light back and keeps unchanged by setting �=�	
=1.3308. Only deviations from it cause a nonvanishing feed-
back, which in fact modifies its stability. These effects and
the resulting bifurcations have been calculated by applying
the software package DDE-BIFTOOL �17� to the delay-
differential system �20�–�23�. Now the leading Floquet expo-

nents change with b0 is plotted in Fig. 8�b� for �=0. With
increasing b0, the unstable real Floquet exponent decreases
and becomes negative in point T. This stabilization is due to
a transcritical bifurcation T, as predicted in Sec. II. In terms
of the Floquet multipliers this indicates that an unstable mul-
tiplier crosses the unit circle at 1. With a further increase of
the control parameter b0, first, two branches of eigenvalues
with negative real parts coalesce and then a destabilization
takes place, when the two complex conjugate eigenvalues
become unstable; i.e., a Hopf bifurcation to self-pulsating
solutions occurs in point H in Fig. 8�b�. The zero line in Fig.
8�b� corresponds to the trivial Floquet exponent, which oc-
curs due to the symmetry and does not influence the stability.

A two-parameter bifurcation diagram of the same rotating
wave in the plane �� ,b0� is shown in Fig. 9. The stability
region is bounded by the Hopf and transcritical bifurcations
mentioned before. The role of these bifurcations is as pre-
dicted by the generic model in Sec. II and also, the shape is
similar to that of Fig. 5. It is interesting to compare this
bifurcation diagram to other known cases of all-optical con-
trol. A simple single-mode laser exposed to noninvasive con-
trol of type �25� changes stability similarly by transcritical
and Hopf bifurcations �18�—only the laser is destabilized but
not stabilized. In case of rotating waves beyond a Hopf bi-
furcation in an ITL laser, the domains of control are also
bounded by Hopf and transcritical bifurcations but with dif-
ferent ordering: inverse Hopf defines the lower bound
whereas the upper bound is partly transcritical �7,19�. Quan-
titatively, the vertical extension of the present control domain
near a fold bifurcation is, however, small compared to the
latter case. Thus, a possible experimental stabilization near
folds will probably require a more precise adjustment of con-
trol amplitude b0 compared to Refs. �7,19�.

To investigate the influence of the control on the environ-
ment of the target state, we recalculated the bifurcation dia-
gram of Fig. 7�b� with control parameters on the vertical line
2 in Fig. 9. The resulting branches of rotating waves are
compared to those of the uncontrolled device in Fig. 10.
Panel �a� exemplifies the particular case b0=0.005. Apart

FIG. 8. �a� Floquet exponents of the uncontrolled target state.
�b� Real part of leading Floquet exponents of the target state as a
function of b0 for �=0. T denotes transcritical, and H denotes Hopf
bifurcations, respectively. Parameters are �=0.03, J=1, �=0.2, �
=0.3, �=2, �=0.1109, �=0.1267, 	l=8, 	=12, and �=�	.

FIG. 9. �Color online� Two-dimensional bifurcation diagram of
the target state with respect to the control parameters b0 and �.
Black solid line: Hopf bifurcation. Above this line the laser emits
self-pulsations. Red dashed line: transcritical bifurcation. Below
this line, the target state is unstable. The gray area denotes the
stability region. ZH is the zero-Hopf bifurcation of codimension
two. Line 1 corresponds to the parameter path along which the
eigenvalues are computed in Fig. 8�b�. Line 2 corresponds to the
parameter changes in Fig. 10. Other parameters are as in Fig. 8.
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from the target state �open circle�, which keeps unchanged
on purpose, the feedback is invasive and changes the laser
state. Due to the smallness of b0, the modifications are minor
�note the small zoom compared to the full bifurcation dia-
gram Fig. 9�a��. The fold bifurcation is preserved and shifted
slightly above the target state. As a consequence, the target is
now on the stable branch. The stabilization transition hap-
pens when the fold bifurcation crosses the unstable branch of
the uncontrolled system exactly in the target state. The target
is the upper of the two states with �=0.1267; it is unstable
for smaller b0 �curve 1� and stable for larger b0 �curve 3�.
Both states cross in a transcritical bifurcation �inset�, in
agreement with the results of Sec. II.

IV. CONCLUSIONS

We have shown that, contrary to common belief, unstable
periodic states with an odd number of real Floquet multipli-
ers greater than unity, here created by a fold bifurcation, can
indeed be stabilized by time-delayed feedback control. As a
promising all-optical realization we propose an integrated
semiconductor tandem laser combined with a Michelson in-
terferometer.

Our analysis is complementary to the previous publica-
tions on this topic �4–6�, which have been devoted to the
stabilization of unstable periodic orbits close to a subcritical
Hopf bifurcation. The approaches which have been used in
the above papers are specifically based on the normal form at
the subcritical Hopf bifurcation and cannot be simply trans-
ferred to the fold case. The common point in both scenarios
of stabilization is the appearance of a transcritical bifurcation
resulting from the two basic assumptions: vanishing control
term for the Pyragas orbit, and the existence of one unstable
real positive Floquet multiplier.

Note that one can perturb Eqs. �6� or Eqs. �20�–�23�, such
that the S1 symmetry is broken. In this case the stable �un-

stable� rotating waves will be perturbed into stable �unstable�
periodic solutions, respectively, which will no longer have
the form of rotating waves. Thus, by rigorous perturbative
arguments, our paper refutes the odd-number limitation also,
for periodic solutions which are not rotating waves. On the
other hand, in nonautonomous systems the odd-number limi-
tation may still hold �5�.
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APPENDIX A

In this Appendix, we derive conditions �12� and �13� at
which the transcritical bifurcation in system �6� occurs. To
derive Eq. �12� we could proceed by brute force: linearize
the control system �6� along the Pyragas branch, in polar
coordinates; derive the characteristic equation in a co-
rotating coordinate frame; eliminate the trivial zero charac-
teristic root; and determine 	=	c, r=rc, and b0=bc such that
a nontrivial zero characteristic root remains. Instead, we will
proceed locally in a two-dimensional center manifold of the
fold, following the arguments in Just et al. �5�, as given in
Appendix B below. Any periodic solution in the center mani-
fold of Eq. �6� is a rotating wave z�t�=rei�t.

Hence, let us compute the rotating waves of the system
�6�, globally. Substituting z�t�=rei�t into Eq. �6� and decom-
posing into real and imaginary parts, we obtain

0 = g��,r2� + 2b0 sin
�	

2
sin�� −

�	

2
� , �A1�

� = h��,r2� − 2b0 sin
�	

2
cos�� −

�	

2
� . �A2�

With �=r2−1 and our choices �4� for g and h, these equa-
tions become

0 = �2 − ��	� + 2b0 sin
�	

2
sin�� −

�	

2
� , �A3�

� = �� + �0 − 2b0 sin
�	

2
cos�� −

�	

2
� . �A4�

For small enough b0, we can solve Eq. �A4� for �=���� and
insert into Eq. �A3�,

0 = G�	,�� . �A5�

Here G�	 ,�� abbreviates the right-hand side of Eq. �A3� with
�=���� substituted for �. The condition for a transcritical
bifurcation in the system with control then reads

0 =
�

��
G�	c,�� , �A6�

in addition to Eq. �A5�. It simplifies matters significantly that
this calculation has to be performed along the Pyragas

FIG. 10. �Color online� Branches of stable �solid� and unstable
�dashed� rotating waves without control �thin� and with control
�thick�. F: fold bifurcation. Vertical line: �=0.1267 of the chosen
target state. Open circle: target state. �a� b0=0.005. �b� �1� b0

=0.0030 below, �2� b0=0.0035 at, and �3� b0=0.0050 above the
control threshold. Inset: relation to the transcritical bifurcation. Pa-
rameters are as in Fig. 9 and �=−0.408
, �=1.3308.
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branch only, where �	=2
	 /T=2
k; see Eq. �7�. Therefore
Eq. �A6� becomes

0 =
�

��
G�	c,�� = 2� + b0	c cos k
 sin�� − k
������

= 2� + b0	c�����sin � . �A7�

To obtain the derivative �� of �, with respect to �, we have
to differentiate Eq. �A4� implicitly, at �	=2k
.

�� = � − b0	�� cos � .

Solving for �� for small b0 yields

�� =
�

1 + b0	 cos �
=

�

1 + b0
2k


�0+��cos �
. �A8�

Here we have used �	=2k
 and �=�0+��. Plugging Eq.
�A8� into Eq. �A7�, the control amplitude b0 enters linearly,
and we obtain

0 = ���0 + ����1 + b0
2k


�0 + ��
cos �� + b0k
� sin �

= ���0 + �� + b02k
 cos �� + b0k
� sin � . �A9�

Solving for b0, we obtain the required expression �12� for the
value of the control amplitude, at which the transcritical bi-
furcation occurs.

The equivalent condition �13� follows from Eq. �12� by
straightforward substitution of Eq. �8� and −��=r2−1=�.

APPENDIX B

In this Appendix we perform a linear stability analysis of
the Pyragas orbit. Linearizing Eqs. �18� and �19� around the
Pyragas orbit according to z�t�= �r+�r�exp�i�t+ i���, we
find

d

dt
� �r�t�

���t�
� = � �rgr + g − b0 cos � rb0 sin�� − �	�

�rh − b0 sin�� − �	�
1

r
− b0 cos�� − �	� �� �r�t�

���t�
� + 
 b0 cos�� − �	� − rb0 sin�� − �	�

b0 sin�� − �	�/r b0 cos�� − �	� �� �r�t − 	�
���t − 	�

� .

The delay time 	 matches the period of the Pyragas orbit and we thus have

�	 = 2
k .

Using the exponential ansatz (�r�t� ,���t�)�exp �t gives a transcendental equation for the Floquet exponents � as follows:

det
4�r2 − 1�r2 + �r2 − 1�2 − � − � − b0 cos ��1 − e−�	� rb0 sin ��1 − e−�	�
2�r − �b0/r�sin ��1 − e−�	� − � − b0 cos ��1 − e−�	� � = 0. �B1�

This equation was numerically solved to obtain Fig. 5.
One can find the Hopf bifurcation of the Pyragas orbit in

a semianalytic way by inserting �= i� into Eq. �B1� and
separating the equation into real and imaginary parts as fol-
lows:

Real: 0 = − �2 − 2�b0 cos � sin��	�

− b0�cr sin � + a cos ���1 − cos��	��

− b0
22�1 − cos��	��cos��	� , �B2�

Imag: 0 = − a� + 2�b0 cos ��1 − cos��	��

− b0�cr sin � + a cos ��sin��	�

+ b0
22�1 − cos��	��sin��	� . �B3�

We can now use � as a parameter and solve the two equa-
tions for � and b0 at each �. The resulting Hopf curve and
the transcritical bifurcation curve �12� then form the bound-
ary of the control domain �Fig. 11�.

FIG. 11. �Color online� Plot of transcritical �dashed� and Hopf
bifurcation line �solid� and the domain of stability �shaded region�
in the �� ,b0� plane. Parameters are as in Fig. 5.
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